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Abstract

In order to meet the theoretically achievable imaging performance, calibration of modern radio

interferometers is a mandatory challenge, especially at low frequencies. In this perspective, we

propose a novel parallel iterative multi-wavelength calibration algorithm. The proposed algo-

rithm estimates the apparent directions of the calibration sources, the direction dependent and

direction independent complex gains of the array elements and their noise powers. Further-

more, the algorithm takes into account the specific variation of the aforementioned parameter

values across wavelength. Numerical simulations reveal that the proposed scheme outperforms

the mono-wavelength calibration scheme and approaches the derived constrained Cramér-Rao

bound even with the presence of non-calibration sources at unknown directions. Finally, simula-

tion results on LOFAR real data assess the usefulness of the proposed scheme.
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1. Introduction

Advanced radio astronomical arrays, such as the existing LOw Frequency ARray (LOFAR)

[1] and the future Square Kilometre Array (SKA) [2], form large sensor arrays, which are con-

stituted of many small antenna elements. As an example, the LOFAR consists of 50 stations,

mainly located in The Netherlands. Each station is a closely packed sensor array, composed of at

least 96 low-band antennas (LBA, 30-90 MHz) and 48 high-band antenna (HBA, 109-240 MHz)

tiles, each tile being a 4-by-4 uniform regular array of HBAs. Such interferometers offer a large

aperture size and deliver large amounts of data in order to reach high performance in terms of

resolution, sensitivity and survey speed [2]. Nevertheless, to achieve the theoretical optimal per-

formance bounds, a plethora of signal processing challenges must be treated [3, 4]. This covers

calibration, image synthesis and data reduction. In this paper, we focus on calibration issues by

designing a computationally efficient parallel algorithm. Calibration procedures devised for such

radio interferometers must estimate: i) the gain response and noise power of each antenna [5–8];

and ii) the propagation disturbances, especially the phase delays caused by the ionosphere, which

scale with wavelength [9, 10].

Specifically, in this paper, we focus on the regime where the lines of sight from each antenna

toward a source in the sky cross the same ionospheric layer and where the thickness of the

ionosphere can be direction dependent [11], which is represented in Figure 1 and well adapted for

the calibration of a LOFAR station and the future SKA stations as well as the core of these arrays.

Consequently, in this regime, the ionospheric phase delays are added to the geometric delays and

introduce angular-shifts for the source directions [7, 12], which are direction and wavelength

dependent [9, 13]. By estimating calibrator shifts (i.e., the difference between the true calibrator

directions, known from tables [14–17], and their estimated apparent directions), interpolation

methods can be efficiently applied in order to obtain a phase screen model that captures the

ionospheric delays over the entire Field-of-View [12]. We emphasize that in addition to the

phase screen reconstruction step, the calibration usually involves the estimation of the complex

direction independent (DI) gains of the antennas, their direction dependent (DD) gains toward

each calibrator and their noise powers [6], for the whole available range of wavelengths.

The characteristics of the calibration sources, i.e., their true/nominal directions and their pow-

ers without the effects of the ionosphere or antenna imperfections, are a priori known from tables

which is required to solve such calibration problems [7]. Based on this knowledge, state-of-
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A: array aperture

V: station beam FoV

ionosphere

S : irregularity

scale of the

ionosphere

different perturbations are intro-

duced along each source signal path

Figure 1: The so-called regime 3, which is considered in this paper, assumes that V � S and A � S . This leads to

ionospheric perturbations which are direction dependent (after [8, 11]).
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the-art calibration algorithms operate mostly in an iterative manner in a mono-wavelength sce-

nario [5–7, 18–21, 21, 22]. For instance, the (Weighted) Alternating Least Squares approach has

been adapted for LOFAR station calibration [5, 6], in which closed-form expressions have been

obtained for antenna gain and sensor noise power parameters. Nevertheless, such algorithms

present three major limitations: i) suboptimality due to the consideration of only one wavelength

at a time; ii) the assumption of a centralized processor, i.e., a single compute agent simultane-

ously accessing all data; and iii) the inefficiency with respect to the Direction-of-Arrival (DoA)

estimation performances in the severe radio astronomical contexts.

Concerning limitation i), most current approaches calibrate a single wavelength at a time

[5–7, 18–20] assuming that solutions can be combined afterwards. This is usually a suboptimal

approach. For the real-time system of the Murchison Widefield Array (MWA) [23] several fil-

tering techniques are combined to isolate the response across frequency such that ionospheric

refraction and instrumental gains can be fitted across frequency on a per-source bases [24]. The

MWA real-time system is highly optimized for a specific case, while we aim to provide a more

general framework that can be adjusted as needed. A more general approach to multi-wavelength

calibration in the context of large radio astronomical arrays is the procedure presented in [25].

That procedure treats calibration as a single, mathematically defined optimization problem that is

solved using a general solving strategy. Unlike [25], we consider a structured parametric model

based on the sample covariance matrix in the array processing framework based on some a priori

knowledge about the physics of the system as described in the data model section. As a conse-

quence, the problems are different, since we do not estimate the elements of the Jones matrices

as in [25], but we aim to estimate the apparent directions of the calibration sources, the direction

dependent and direction independent complex gains of the array elements and their noise powers

using physical constraints given in Section 2.

Furthermore, regarding the limitation ii), the aforementioned state-of-the-art methods typi-

cally are designed for a centralized hardware architecture, whereas, taking the LOFAR stations

as example, processing all 512 frequency bands simultaneously at a single location, if feasible,

is challenging. As a solution, parallel and consensus algorithms, mostly based on the Alternat-

ing Direction of Multiple Multipliers (ADMM) [26], have recently been massively investigated

in parametric estimation frameworks [27–34]. These consensus schemes can operate in various

network topologies. We will consider a group of compute agents, where each agent accesses data
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across a small bandwidth and can only communicates with a fusion center through low data rate

channels. This architecture models correctly the situation for radio interferometers, where data

for the full observing bandwidth is typically divided into channels and channels are grouped into

subbands.

Finally, regarding the limitation iii), classical subspace methods, such as MUSIC [35], have

been commonly applied in radio astronomical calibration [6]. However, these techniques are in-

efficient in low Signal-to-Noise-Ratio (SNR) scenarios and require knowledge of the exact num-

ber of sources in the scene. As an alternative, recent approaches, based on sparse reconstruction

methods, came into focus of DoA estimation for fully calibrated arrays [36–38] as well as for par-

tially calibrated arrays [39]. These approaches exhibit the super-resolution property, robustness

and computational efficiency, without the aforementioned limitations of subspace-based meth-

ods [36]. However, most methods based on the compressive sensing framework are designed for

a centralized hardware architecture and are applied in the signal time domain [20, 40]. These

methods become computationally impractical with huge numbers of observations, making them

unsuitable for calibration in the radio interferometer context for which we commonly access

only the sample covariance matrix rather than the time signal itself [7]. This issue was also rec-

ognized recently in [22] and [41], in which the authors propose a technique for, respectively, full

calibration and blind calibration of the DI gains for individual frequency channels by assuming

that the observed scene is sparse. We stress that many works based of compressed sensing has

been developed for image reconstruction in the radio astronomy community [42–45] as a result

of the sparse nature of the interferometric sampling. Such sparse implementations produce better

results on large extended objects with high angular resolution than other classical deconvolution

methods. However, these works assume usually an already calibrated array. Note that the cali-

bration and imaging steps are different. In image reconstruction, compressed sensing studies are

based on sparse analysis and/or sparse synthesis using, e.g., wavelets, union of wavelet bases or

synthesis IUWT (Isotropic Undecimated Wavelet Transform). In our calibration problem, com-

pressed sensing techniques are used in order to estimate the phase shift due to the ionosphere

using a Distributed Iterative Hard Thresholding method in which the grid is constructed based

on array processing modeling.

In this paper, we propose an iterative algorithm, namely the Parallel Multi-wavelength Cal-

ibration Algorithm (PMCA), that performs the calibration of a radio astronomical array using
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its array covariance matrix (usually referred to as a matrix of visibilities in radio astronomy),

involving disturbances due to individual antennas and propagation effects. We assume that the

sensor array has an arbitrary geometry, identical elements and is simultaneously excited by in-

accurately known calibration sources and unknown weak non-calibration sources. The proposed

PMCA overcomes the aforementioned limitations, by: i) reformulating the parametric model in

the multi-wavelength scenario in order to exploit wavelength diversity; ii) relying on parallel

and consensus algorithms; and iii) adapting the sparse reconstruction methods to the calibration

of radio astronomical arrays. From the parallel calibration perspective, the PMCA successively

estimates the DI antenna gains along with the DD and noise parameters for multiple subbands,

where we enforce the coherence over the wavelength of the estimates based on physical and

astronomical phenomena [8, 9, 13, 46].

The rest of the paper is organized as follows: in Section 2, we formulate the data model

and its associated parallel multi-wavelength calibration problem. In Section 3, we present the

overview of the proposed scheme and then describe its two main alternating steps. The con-

strained Cramér-Rao bound of the data model is derived in Section 4. Numerical simulations

and real data tests, in Section 5, show the feasibility and superiority of the proposed scheme

compared to mono-wavelength calibration. Finally, we give our conclusions in Section 6.

In the following, (.)∗, (.)T, (.)H, (.)†, (.)�α, <(.), =(.) and [.]n denote, respectively, conjuga-

tion, transposition, Hermitian transposition, pseudo-inverse, element-wise raising to α, real part,

imaginary part and the n-th element of a vector. The expectation operator is E{.},⊗ denotes the

Kronecker product, exp(.) and � represent the element-wise exponential function and multipli-

cation (Hadamard product), respectively. The operator diag(.) converts a vector to a diagonal

matrix with the vector aligned on the main diagonal, blkdiag(.) is the block-diagonal operator for

matrices, whereas vecdiag(.) produces a vector from the main diagonal of its matrix argument

and vec(.) converts a matrix to a vector by stacking the columns of its entry. The operators ‖.‖0,

‖.‖2 and ‖.‖F refer to the l0 norm, i.e., the number of non-zero elements of its entry, the l2 and

Frobenius norms, respectively. x � 0 means that each element in x is non-negative.
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2. Data Model & Problem Statement

2.1. Covariance Matrix Model

Consider an array comprised of P elements, with known locations, each referred by its Carte-

sian coordinates ξp =
[
xp, yp, zp

]T
for p = 1, . . . , P, that we stack in Ξ =

[
ξ1, . . . , ξP

]T
∈

RP×3. This array is exposed to Q known strong calibration sources and QU unknown weak non-

calibration sources. Let DK =
[
dK

1, . . . ,d
K
Q

]
∈ R3×Q and DU =

[
dU

1, . . . ,d
U

QU

]
∈ R3×QU

denote the

known (true/nominal) calibrator direction cosines and unknown non-calibrator direction cosines,

respectively, in which each source direction d = [dl, dm, dn]T can be uniquely described by a

couple (dl, dm), since dn =

√
1 − d2

l − d2
m [6, 9]. The ionosphere introduces an unknown angular-

shift for each source direction [3, 12, 13], depending on the wavelength λ, which is related to the

frequency f = c/λ, with c denoting the speed of light. Consequently, we distinguish between the

unknown apparent directions w.r.t. the calibrators, denoted by Dλ =
[
dλ,1, . . . ,dλ,Q

]
, that depend

on λ since the shift is wavelength dependent, and their true/nominal known directions DK, i.e.,

without the propagation disturbances.

In the following, we describe the signal for one wavelength bin λ. Under the narrowband

assumption, the steering vector aλ(d) toward the direction d (at wavelength λ) is given by

aλ(dl, dm) =
1
√

P
exp

(
−j

2π
λ

Ξd
)

, (1)

that we gather for multiple directions in the steering matrix

ADλ
=

1
√

P
exp

(
−j

2π
λ

ΞDλ

)
. (2)

As in [6], we assume that all antennas have identical directional responses. Their DD gain

responses (and propagation losses) are modeled by two diagonal matrices, Γλ ∈ CQ×Q and ΓU
λ ∈

CQU×QU
toward the calibration and non-calibration sources, respectively.

The received signals from each antenna are partitioned into narrow subbands. The measure-

ment of the sensor array collected in the subband with wavelength λ are stacked to the received

signal vector

xλ(n) = Gλ
[
ADλ

Γλsλ(n) + ADU
λ
ΓU
λsU
λ(n)

]
+ nλ(n), (3)

for the n-th observation, where we stress that each element of the right part of (3) depend on λ and

AU
λ is the steering matrix for unknown sources, with [xλ(n)]p denoting the signal corresponding
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to the p-th antenna, where Gλ = diag(gλ) ∈ CP×P models the DI antenna gains, with [gλ]p

the DI antenna gain for the p-th antenna. sλ(n) ∈ CQ and sU
λ(n) ∈ CQU

represent, respectively,

the i.i.d. calibrator and non-calibrator signals, with [sλ(n)]q and [sU
λ(n)]q′ , respectively, the signal

corresponding to the q-th calibrator and q′-th non-calibrator, whereas nλ(n) ∼ CN(0,Σn
λ) denotes

the i.i.d. noise vector, with [nλ(n)]p the thermal noise for the p-th antenna [7]. Assume that the

sources are statistically independent from each other and let Σλ = diag (σλ) ∈ RQ×Q, ΣU
λ =

diag
(
σU
λ

)
and Σn

λ = diag
(
σn
λ

)
∈ RP×P be the diagonal covariance matrices for, respectively,

the calibrators, non-calibration sources and sensor noises. Consequently, sλ(n) ∼ CN(0,Σλ),

sU
λ(n) ∼ CN(0,ΣU

λ) and the covariance matrix Rλ = E
{
xλxH

λ

}
of the observations corresponding

to model (3) is given by

Rλ = EDλ
MλEH

Dλ
+ RU

λ + Σn
λ, (4)

in which

EDλ
= GλADλ

Σ
1
2
λ , (5)

Mλ = ΓλΓ
H
λ = diag (mλ) , (6)

and where we have defined the unknown covariance matrix for the non-calibration sources as

RU
λ = GλADU

λ
ΓU
λΣ

U
λ

(
GλADU

λ
ΓU
λ

)H. (7)

In radio astronomy, sources (including the calibration sources), are typically much weaker than

the antenna noise , so the covariance matrix is usually approximated by Rλ ≈ Σn
λ. Since the

array consists of identical elements and mutual coupling can usually be ignored, it is commonly

assumed that

Σn
λ = diag

(
σn
λ

)
≈ σn

λI. (8)

Such no mutual coupling is currently assumed due to antenna separation (though this may not

exactly be true in a station array) and careful hardware implementations as in LOFAR [1].

In order to overcome the scaling ambiguities in the observation model (4), we consider the

following commonly used assumptions in radio astronomy [6–8]: i) to resolve the phase ambi-

guity of gλ, we take its first element as the phase reference [47, 48]; ii) the phase information of

of Γλ drops, consequently, we only estimate Mλ, i.e., its absolute part; iii) mλ shares a common

scalar factor with gλ and consequently, we assume that the directional gain towards the first cal-

ibration source is known / fixed; and iv) when solving for the calibrator directions, a common
8



rotation of all steering vectors can be compensated by the undirectional gain phase solution. We

therefore fix the direction of the first calibration source at its known position [5].

2.2. Model Effects of the Wavelength on Antenna Gains, Source Direction Shifts and Source

Powers

In the radio astronomical context, the antenna and source parameters of the covariance matrix

are commonly assumed as wavelength dependent [7, 8]. Consequently, we assume smooth and/or

known variations of the parameters gλ, Γλ, Σλ, ΣU
λ and Σn

λ in (4) over λ, as commonly used in

recent works on array calibration in radio astronomy [25, 49]. We summarize the particular

behavior of the underlying parameters as follows:

• The DI gains, gλ, vary smoothly over λ. Hence, in order to impose coherence along sub-

bands (not along different sensors), we define a set of smooth basis functions bk,λ as a

function of the wavelength λ, for k = 1, . . . ,K. These basis functions define our coher-

ence model, in which, for the p-th sensor, its gain [gλ]p is a function of wavelength λ and

represented as a linear combination of basis functions, hence:

[gλ]p =

K∑
k=1

bk,λαk,p,∀λ ∈ Λ, p = 1, . . . , P, (9)

where αk,p represents the linear coefficient corresponding to the k-th basis function for the

p-th sensor. Common models for characterizing this behavior consist of classical polyno-

mials of power law over λ [8, 25], e.g., we can consider the set of K-th order basis functions

centered around a reference wavelength λ0 = c/ f0 that is defined by bk,λ = ((λ0 − λ)/λ)k−1

[25] that impose smoothness w.r.t. frequency (keeping in mind that bk,λ0 = 1). Let us

denote

bλ =
[
b1,λ, . . . , bK,λ

]T
∈ RK , (10)

representing all polynomial terms and rewrite (9) as

gλ =
(
bT
λ ⊗ I

)
α = Bλα,∀λ ∈ Λ, (11)

where Bλ =
(
bT
λ ⊗ I

)
∈ RP×PK and α is thus the augmented vector of hidden variables

defined by

α =
[
α1,1, . . . , α1,P, α2,1, . . . , αK,P

]T
∈ CPK . (12)

9



• For dipoles like in LOFAR, the DD gains contain a resonance frequency at which the

response peaks, and a roll-off left and right that frequency. For simplicity and readability,

we assume the DD gains, Γλ, are inversely proportional to λ, i.e., Γλ ∝ λ
−1, as observed

for the small wavelength range used in Section 5. Note that the proposed algorithm can

be straightforwardly adapted with another given behavior (including the simplest case of a

constant behavior across the wavelength range).

• As a consequence of the ionospheric delays, the directional shifts are proportional to λ2

[9, 13, 46]. Furthermore, we assume that the calibration sources are well separated, which

is common in radio astronomy [6, 7], and consider in the remainder of this paper that for

every wavelength:

A1) each apparent calibration source lies in an uncertainty sector with a predefined angu-

lar spread around its nominal location.

A2) the displacement sectors of different calibration sources are not overlapping.

• The source powers, Σλ and ΣU
λ, vary commonly with a power law with different spectral

indexes. We consider the calibrator powers, Σλ, to be known from tables, e.g., [14–17].

• The antenna noise covariance matrices, Σn
λ, do not exhibit a smooth behavior w.r.t. λ

and noise is assumed to be independent over wavelength. Nevertheless, if any particular

coherence model for the noise covariances is available, this knowledge can be incorporated

in the proposed algorithm in a straightforward manner.

2.3. Joint Parameter Estimation Problem

In this subsection, we formulate the calibration problem as the estimation of the parameter

vector of interest, p, defined as

p =
[
pT
λ1
, . . . ,pT

λJ

]T
, (13)

under the constraints given in Subsection 2.2, in which pλ =
[
gT
λ ,d

T
λ,1, . . . ,d

T
λ,Q,m

T
λ ,σ

nT
λ

]T, from

J sample covariance matrices {
R̂λ =

1
N

N∑
n=1

xλ(n)xH
λ (n)

}
λ∈Λ

, (14)

where Λ = {λ1, . . . , λJ} represents the set of the J available wavelengths for the whole network

and assume that J ≥ K, i.e., accessing to data for at least K wavelengths, which is assumed to
10



be satisfied since, e.g., for the LOFAR, the signal is typically divided into 512 subbands while

usually a low polynomial order is sufficient to represent the variations across wavelength (3 to 5

in our numerical simulations).

Data parallelism across wavelength is a recent field of research in radio astronomical observa-

tions, in which data are recorded as multiple channels at different wavelengths [1], thus, leading

to a data which is not centralized but paralleled across the network. This network consists of: i)

one fusion center, that does not access data; and ii) Z compute agents. The z-th agent, Az, can

only access data for a subset Λz ⊂ Λ of Jz ≤ J subbands, and for each available wavelength, its

associated sample covariance matrix is accessible for exactly one agent. Moreover, the agents

cannot exchange information among themselves. Operation flow and signaling exchange be-

tween local processors and the central processor is given in the end of the algorithm description

(c.f. Fig. ???)

Note that the estimation of the unknown matrices RU
λ represents the imaging step which is

beyond the scope of the paper [6, 7, 9, 50]. Image synthesis [51–55] is usually performed as a

separate procedure after the calibration and can be complemented by the proposed calibration

approach. The main reason for this two-step procedure is that the calibration step is usually

carried out based on a point source model (unlike the imaging step) with a known number of

strong calibrators. In addition, the power of the calibrators are much higher than the power of

the weakest (non-calibrator) sources. This causes a bias in the DI gain solutions that results in

imaging artefacts know as ghosts [56, 57]. This effect can be mitigated by improving the sky

model. Consequently, in the LOFAR pipeline, an alternating scheme between calibration and

imaging is performed [1, 3].

3. Proposed Parallel Multi-wavelength Calibration Algorithm

3.1. Overview of the Proposed Parallel Multi-wavelength Calibration Algorithm

In this subsection, we define the main steps of our proposed algorithm, then, in the following

subsections, we describe each step in detail.

It is well established that a statistically efficient estimator can be obtained via the Maximum

Likehood method. However, from a computational viewpoint, its exact evaluation appears to be

intractable in the radio astronomical context [6]. With a large number of samples, statistically

11



Algorithm 1: Parallel Multi-wavelength Calibration Algorithm

Input:
{
R̂λ,m[0]

λ

}
λ∈Λ,DK, , ηp;

Init: set i = 0,
{
gλ = g[0]

λ

}
λ∈Λ,

{
Dλ = DK,mλ = m[0]

λ ,Ωλ = 1P×P
}
λ∈Λ;

repeat

1 i = i + 1;

2 Estimate paralelelly
{
g[i]
λ

}
λ∈Λ with Algorithm 1.2;

3 Estimate paralelelly
{
D[i]
λ ,m

[i]
λ ,σ

n[i]
λ

}
λ∈Λ with Algorithm 1.3;

4 Update locally
{
Ω

[i]
λ =

(
σn[i]
λ σn[i]T

λ

)�− 1
2 }

λ∈Λ;

until
∥∥∥p[i−1] − p[i]

∥∥∥
2 ≤

∥∥∥p[i]
∥∥∥

2 ηp;

Output: p̂ =
[
p[i]T
λ1
, . . . ,p[i]T

λJ

]T;

efficient estimators can be devised using the Weighting Least Squares approach. In this context,

we define, for each λ ∈ Λ, the local cost function [5] to be minimized as

κλ(pλ) =

∥∥∥∥∥W− 1
2

λ

(
Rλ(pλ) − R̂λ

)
W− 1

2
λ

∥∥∥∥∥2

F
, (15)

in which

Rλ(pλ) = EDλ
MλEH

Dλ
+ Σn

λ (16)

denotes the covariance matrix when the contribution of the (weakest) non-calibrators is absorbed

in the noise, and Wλ is the weighting matrix. The optimal weighting matrix for Gaussian noise

is the true covariance matrix of the observation [58], which is generally unknown. Due to the

low SNR regime in which radio astronomical arrays usually operate, it is often assumed that the

noise power per receiving element is much larger than the source powers [5, 18], we therefore

consider Wλ = I in our alternating algorithm as an initialization and refine it as Wλ = Σn
λ once

we obtain an estimate of Σn
λ. Since Σn

λ is diagonal, we rewrite the local cost function (15), i.e.,

the cost function associated with the wavelength λ, as

κλ(pλ) =
∥∥∥∥(Rλ(pλ) − R̂λ

)
�Ωλ

∥∥∥∥2

F
, with (17)

Ωλ =
(
σn
λσ

nT
λ

)�− 1
2 . (18)

Finally, with (13), we define the cost function for the entire network as

κ(p) =
∑
λ∈Λ

κλ(pλ). (19)
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Our aim is to estimate p by minimizing κ(p) in an alternating and parallel manner. Note that

the overall problem is non-convex, so we can not claim finding the global minimum when the al-

gorithm converge (neverthless, in practice we might have good initialisation that converges to the

global minimum as shown in the real data simulation). We first estimate locally in each agent the

parameter vector {gλ}λ∈Λ, with the remaining parameters in p fixed as described in Subsection 3.2,

by reformulating the problem as a consensus problem, in which the updates of α provide coher-

ence among wavelength. In a second step, we estimate the variables
{
mλ,dλ,1, . . . ,dλ,Q,σn

λ

}
λ∈Λ

for fixed {gλ}λ∈Λ, by using a sparse representation approach as described in Subsection 3.3. Fi-

nally, we update the weighting matrices {Ωλ}λ∈Λ. During these procedures, the amount of infor-

mation that needs to be exchanged between the fusion center and the compute agents is much

less than the volume of data being calibrated, making this scheme computationally feasible. The

overall procedure, referred to as Parallel Multi-wavelength Calibration Algorithm (PMCA), is

presented in Algorithm 1. The algorithm is carefully initialized with the true/nominal calibra-

tor parameters and an initial guess for the antenna gains, e.g. from precedent calibration, or

by default by the unit sensor gain, g[0]
λ = 1. The stopping criterion ηp has to be sufficiently

small to assure convergence. In the following subsections, we detail the two major alternating

optimization steps of the proposed PMCA.

3.2. Direction Independent Antenna Gain Estimation (Algorithm 1.2)

In this subsection, we describe Algorithm 1.2 of the PMCA. As shown in Algorithm 1.2, this

optimization step is performed w.r.t. the DI gain parameters {gλ}λ∈Λ, while the remaining param-

eters
{
mλ,dλ,1, . . . ,dλ,Q,σn

λ

}
λ∈Λ

of p are fixed. During this step, each agent calibrates the sensor

gains gλ using the data available locally and Algorithm 1.2.2. Then, the agents transfers their pa-

rameter estimates to the centralized location. At the fusion center, smoothness of the parameters

across wavelength is enforced (line 3 of Algorithm 1.2), using the coherence parameter vector α,

that is passed to each agent to provide coherent processing across the whole wavelength range,

and thus improving the local calibration procedure.

At this point, we distinguish between centralized and parallel based estimation of α. Specif-

ically:

• Centralized calibration leads to a direct estimation scheme of α from the data, in which

we substitute in the minimization of (19) the sensor gains {gλ}λ∈Λ by α according to (11).
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Algorithm 1.2: estimation of {gλ}λ∈Λ

Input:
{
R̂λ

}
λ∈Λ,p[i−1], ηg;

Init: set t = 0,
{
g[t]
λ = g[i−1]

λ

}
λ∈Λ,

{
RK
λ = AD[i−1]

λ
M[i−1]

λ AH
D[i−1]
λ

}
λ∈Λ;

repeat

1 t = t + 1 ;

2 Estimate locally
{
g[t]
λ

}
λ∈Λ with Algorithm 1.2.2 ;

3 Estimate α[t] at the fusion center with (36);

4 Update locally the Lagrange multipliers
{
y[t]
λ

}
λ∈Λ with (24);

until
∑
λ∈Λ

∥∥∥g[t−1]
λ − g[t]

λ

∥∥∥
2 ≤

∑
λ∈Λ

∥∥∥g[t]
λ

∥∥∥
2 ηg;

5 Deduce locally
{
ĝλ

}
λ∈Λ from α[t] with (11);

Output:
{
ĝλ

}
λ∈Λ;

However, this requires access to all data by minimizing (19) w.r.t. α, which is computa-

tionally unfeasible due to the restriction resulting from the large data volumes.

• Let us recall that Z computational agents are disposed on a network (see, Subsection 2.3),

where the z-th agent, Az, accesses data for wavelengths λ ∈ Λz ⊂ Λ. In this perspective,

we propose a parallel calibration scheme, in which the sensor gains corresponding to each

wavelength λ are estimated locally and consensus is enforced among agents by imposing

constraint (11).

With this network setup, we formulate the parallel calibration procedure as

minimize
α,{gλ}λ∈Λ

∑
λ∈Λ

κ̃[i]
λ (gλ)

subject to gλ = Bλα,∀λ ∈ Λ,

(20)

in which κ̃[i]
λ (gλ) = κλ(pλ|m[i]

λ ,D
[i]
λ ,σ

n[i]
λ ), i is the [i]-th iteration of Algorithm 1, and where the

cost function consists of a sum of independent cost functions, one for each subband, that are

coupled through the coherence constraints which however are independent across sensors. A

common way to solve (20) is to consider the problem as a consensus optimization problem [26]
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Algorithm 1.2.2: local estimation of {gλ}λ∈Λz

Input:
{
R̂λ,RK

λ, g
[t−1]
λ , y[t−1]

λ ,Ω[i]
λ

}
λ∈Λz

,α[t−1], ηg;

Init: set
{
tλ = 0, g[tλ]

λ = g[t−1]
λ

}
λ∈Λz

;

foreach λ ∈ Λz do

repeat

1 tλ = tλ + 1 ;

for p = 1, . . . , P do

2 r̂p
λ = Sp

(
R̂λ

)
;

3 z = Sp

(
RK
λG∗λ

)
;

4 zω = z � Sp

(
Ω

[i]
λ

)
;

5 [g[tλ]
λ ]p =

2zH
ω(r̂p

λ�ω)+ρ[Bλα
[t−1]]p−[y[t−1]

λ ]p

2(zH
ωzω)+ρ

;

until
∥∥∥g[tλ−1]

λ − g[tλ]
λ

∥∥∥
2 ≤

∥∥∥g[tλ]
λ

∥∥∥
2 ηg;

Output:
{
ĝλ = g[tλ]

λ

}
λ∈Λz

;

and consequently to use the augmented Lagrangian, given by [59]

L[i] ({gλ}λ∈Λ ,α, {yλ}λ∈Λ)
=

∑
λ∈Λ

κ̃[i]
λ (gλ) +<

{
yH
λ (gλ − Bλα)

}
+
ρ

2
‖gλ − Bλα‖

2
2

= <

∑
λ∈Λ

L[i]
λ (gλ,α, yλ)

 , (21)

where {yλ}λ∈Λ are the J Lagrange multipliers and ρ is the regularization term, chosen by the

practitioner. In order to solve (20), we resort to the consensus ADMM [26]. Let t denote the

local iteration counter of Algorithm 1.2, the updates for the [t]-th iteration are given by

g[t]
λ = arg min

gλ
<

{
L[i]
λ

(
gλ,α[t−1], y[t−1]

λ

)}
, λ ∈ Λ, (22)

α[t] = arg min
α
<

∑
λ∈Λ

L[i]
λ

(
g[t]
λ ,α, y

[t−1]
λ

) , (23)

y[t]
λ = y[t−1]

λ + ρ
(
g[t]
λ − Bλα

[t]
)
, λ ∈ Λ, (24)

that correspond to, respectively, the sensor gain update, the smoothness parameter update and

the Lagrange multiplier update. The minimization of (22) is the computationally most expensive

step and is performed locally by each agent. Similarly, (24) is solved locally, whereas (23) is

solved at the fusion center. Procedures for obtaining (22) and (23) are detailed in the following.
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3.2.1. Minimization of (22)

Toward the minimization of (22), we follow an iterative optimization approach based on

[18, 30], that we adapt to our parallel minimization. Let us assume that gλ and g∗λ are two

independent variables. We then regard g∗λ as fixed and minimize L[i]
λ

(
gλ, g∗λ,α

[t], y[t]
λ

)
w.r.t. gλ

only, and without considering the diagonal elements in the cost functions in (20) that contain the

unknown noise variances σn
λ. In this case, the local cost function becomes separable w.r.t. the

elements of gλ, hence,

κ̃[i]
λ (gλ) =

P∑
p=1

κ̃
p[i]
λ ([gλ]p), (25)

where κ̃p[i]
λ ([gλ]p) corresponds to the cost function for the p-th row of Rλ, which depends only

on [gλ]p since the remaining parameters are considered as fixed in this step. Let us define the

operator Sp(.), that converts the p-th row of a matrix to a vector and removes the p-th element

of this selected vector. Further, define the vector r̂p
λ = Sp

(
R̂λ

)
and the weighting vector ω =

Sp

(
Ω

[i]
λ

)
. We can thus write κ̃p[i]

λ ([gλ]p) in (25) as

κ̃
p[i]
λ ([gλ]p) =

∥∥∥∥(r̂p
λ − z[gλ]p

)
� ω

∥∥∥∥2

2
, (26)

in which z = Sp

(
RK
λG∗λ

)
and where

RK
λ = ADλ

MλAH
Dλ

(27)

represents the estimated calibrator sky model. Then, we decompose the augmented Lagrangian

in (22) w.r.t. the elements of gλ as

L[i]
λ

(
gλ,α[t], y[t]

λ

)
=

P∑
p=1

Lp[i]
λ

(
[gλ]p,α

[t], y[t]
λ

)
, (28)

in which

Lp[i]
λ

(
[gλ]p,α

[t], y[t]
λ

)
= κ̃

p[i]
λ

(
[gλ]p

)
+ (29)

[y∗[t]λ ]p

(
[gλ]p −

[
Bλα

[t]
]

p

)
+
ρ

2

∥∥∥∥[gλ]p −
[
Bλα

[t]
]

p

∥∥∥∥2

2
.

By using standard inversion techniques [25, Section 4], we calculate the minimizer of (29) as

[ĝ[t+1]
λ ]p =

2zH
ω

(
r̂p
λ � ω

)
+ ρ

[
Bλα

[t]
]

p
− [y[t]

λ ]p

2
(
zH
ωzω

)
+ ρ

, (30)
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where zω = z � Sp

(
Ω

[i]
λ

)
. Then, we directly update [g∗[t+1]

λ ]p =
(
[ĝ[t+1]
λ ]p

)∗
and proceed in

the same manner with the remaining parameters in gλ. This procedure is summarized in Algo-

rithm 1.2.2 and is repeated until convergence.

3.2.2. Minimization of (23)

After gathering the estimates {g[t+1]
λ }λ∈Λ, the fusion center can obtain a closed-form expres-

sion of α, and then, its estimated value, α̂[t+1], is sent to all agents in the network. Specifically,

α̂[t+1] = arg min
α
<

∑
λ∈Λ

L[i]
λ

(
g[t+1]
λ ,α, y[t]

λ

)
= arg min

α
<

∑
λ∈Λ

y[t]H
λ

(
g[t+1]
λ − Bλα

)
+

ρ

2

∥∥∥g[t+1]
λ − Bλα

∥∥∥2

2

 ,

(31)

which leads, after some calculus, to

α̂[t+1] =

∑
λ∈Λ

ρBT
λBλ

† ∑
λ∈Λ

BT
λ

(
y[t]
λ + ρg[t+1]

λ

) . (32)

Expression (32) can be simplified by means of (11), as

α̂[t+1] =
1
ρ


∑
λ∈Λ

bλbT
λ

† ⊗ I


∑
λ∈Λ

bλ ⊗
(
y[t]
λ + ρg[t+1]

λ

) . (33)

with J ≥ K (see, Subsection 2.2). Finally, denoting

T =
1
ρ

∑
λ∈Λ

bλbT
λ

† , (34)

U[t+1] =
∑
λ∈Λ

(
y[t]
λ + ρg[t+1]

λ

)
bT
λ (35)

and by use of the Kronecker product property vec(ABC) =
(
CT ⊗ A

)
vec(B), (23) is reduced to

the following compact analytical expression,

α̂[t+1] = vec
(
IU[t+1]TT

)
= vec

(
U[t+1]TT

)
. (36)

3.3. Direction Dependent Parameter and Noise Power Estimation (Algorithm 1.3)

In this subsection, we describe Algorithm 1.3 of the PMCA dedicated to the estimation of

the DD parameters and noise powers, i.e.,
{
mλ,dλ,1, . . . ,dλ,Q,σn

λ

}
λ∈Λ

for fixed {gλ}λ∈Λ, which is

based mainly on a sparse representation framework with a parallel implementation.
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By taking into account the assumptions A1 and A2 of Subsection 2.2, each of following

dictionaries is obtained from sampling the uncertainty sector corresponding to a particular cali-

brator. Let us recall that according to our model, the shifts of the directions are proportional to

λ2 [13] (see, Subsection 2.2). Consequently, we impose the same behavior w.r.t. the wavelength

in the grid resolutions, i.e., ∆lqλ ∝ λ
2,∆mq

λ ∝ λ
2, by scaling them around λ0 as

∆lqλ =

(
λ

λ0

)2

∆lqλ0
, (37)

∆mq
λ =

(
λ

λ0

)2

∆mq
λ0

. (38)

Thus, we define JQ dictionaries of steering vectors, Ãq,λ ∈ CP×Nq , for q = 1, . . . ,Q, λ ∈ Λ, which

contain Nq steering vectors, centered around the true/nominal direction of the q-th calibrator,

namely dK
q, with resolution

(
∆lqλ,∆mq

λ

)
and Nq � 1. These dictionary steering matrices are

gathered in

Ãλ =
[
Ã1,λ, . . . , ÃQ,λ

]
∈ CP×Ng , λ ∈ Λ, (39)

with Ng =
∑Q

q=1 Nq denoting the total number of directions on the grid.

We define then J vectors, {m̃λ}λ∈Λ, as

m̃λ =
[
m̃T

1,λ, . . . , m̃
T
Q,λ

]T
∈ RNg , λ ∈ Λ, (40)

which contain the squared DD gains towards all calibrators, where m̃q,λ is the sparse vector

associated with Ãq,λ. Due to the previous assumption of non-overlapping displacement sectors,

each m̃q,λ is exactly 1-sparse, i.e.,
∥∥∥m̃q,λ

∥∥∥
0 = 1, for q = 1, . . . ,Q,∀λ ∈ Λ. Since the shift

resolution in the dictionaries is made proportional to λ2, the support of m̃q,λ is independent of

λ. To proceed, we exploit that Γλ ∝ λ−1 (see, Subsection 2.2) in order to estimate a unique

sparse vector for all wavelengths, namely m̃. More precisely, under this assumption, we define

m̃ =
[
m̃T

1 , . . . , m̃
T
Q

]T
as

m̃λ =

(
λ0

λ

)2

m̃,∀λ ∈ Λ, (41)

which can be also adjusted for other existing models of Γλ.

Using (16), the approximate covariance model can be rewritten as

Rλ = ẼλM̃ẼH
λ + Σn

λ, (42)
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Algorithm 1.3: estimation of
{
Dλ,mλ,σ

n
λ

}
λ∈Λ

Input:
{
R̂λ, g[i]

λ

}
λ∈Λ,p[i−1], ηm̃;

Init: set k = 0,
{
g[k]
λ = g[i]

λ ,M
[k]
λ = M[i−1]

λ

}
λ∈Λ,

{
D[k]
λ = D[i−1]

λ ,σn[k]
λ = σn[i−1]

λ

}
λ∈Λ;

repeat

1 k = k + 1;

for q = 1, . . . ,Q do

foreach Az, z = 1, . . . ,Z do

foreach λ ∈ Λz do

2 Calculate locally r̂q
λ = r̂λ −

∑q−1
q′=1 Vq′

λ m̃[k]
q′ −

∑Q
q′=q+1 Vq′

λ m̃[k−1]
q′ ;

3 Send
∑
λ∈Λz

VqT
λ r̂q

λ to the fusion center;

4 Hard thresholding by the fusion center m̃[k]
q = H1

(
m̃[k−1]

q + τ[k]
q

∑
λ∈Λ VqT

λ r̂q
λ

)
;

5 The fusion center communicates the non-zero element of m̃[k]
q and its associated

direction d[k]
λ0,q

;

until
∥∥∥m̃[k−1] − m̃[k]

∥∥∥
2 ≤

∥∥∥m̃[k]
∥∥∥

2 ηm̃;

6 Deduce locally
{
m̂λ

}
λ∈Λ from m̃[k] =

[
m̃[k]T

1 , . . . , m̃[k]T
Q

]T
, with (41);

7 Deduce locally
{
D̂λ

}
λ∈Λ from D[k]

λ0
=

[
d[k]
λ0,1

, . . . ,d[k]
λ0,Q

]
with (37) and (38);

8 Estimate locally
{
σn
λ

}
λ∈Λ with (57);

Output:
{
D̂λ, m̂λ, σ̂

n
λ

}
λ∈Λ ;

in which M̃ = diag(m̃),

Σ̃λ = blkdiag
(
IN1×N1 [σλ]1 , . . . , INQ×NQ [σλ]Q

)
and (43)

Ẽλ =
λ0

λ
GλÃλΣ̃

1
2
λ . (44)

Let us then define

Vλ =
(
Σn
λ

)− 1
2 Ẽ∗λ ⊗

(
Σn
λ

)− 1
2 Ẽλ, (45)

Nλ = Σ
n− 1

2
λ ⊗ Σ

n− 1
2

λ , (46)

r̂λ = vec
(
R̂λ �Ωλ

)
, (47)

computed with the previous estimate of Σn
λ and Ωλ in (18). Thus, we formulate the minimization
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problem as

minimize
m̃,{σn

λ}λ∈Λ

∑
λ∈Λ

∥∥∥r̂λ − Vλm̃ − Nλσ
n
λ

∥∥∥2
2

subject to m̃ � 0,σn
λ � 0,∀λ ∈ Λ∥∥∥m̃q

∥∥∥
0 = 1 for q = 1, . . . ,Q.

(48)

Since the p-th element of σn
λ, [σn

λ]p, is only present in the p-th diagonal term of Rλ, ignoring this

term does not affect (asymptotically) the estimation of m̃. Consequently, it is more convenient to

estimate σn
λ after the estimation of m̃.

For this purpose, we denote r̂λ and Vλ, that refer, respectively, to r̂λ and Vλ, where the

elements corresponding to the diagonal of Rλ are discarded. We further define

hλ(m̃) =
∥∥∥r̂λ − Vλm̃

∥∥∥2
2 , λ ∈ Λ, (49)

to obtain the solution of m̃ in (48) after supposing σn
λ � 0, as

ˆ̃m = arg min
m̃

∑
λ∈Λ

hλ(m̃)

subject to m̃ � 0,∥∥∥m̃q

∥∥∥
0 = 1 for q = 1, . . . ,Q,

(50)

which is used in Algorithm 1.3.

To consider the l0 constraints in (50), which are non-convex and NP-hard [60], we choose

the Distributed Iterative Hard Thresholding method [61–63], which is based on Iterative Hard

Thresholding [64]. This greedy algorithm consists of a projected gradient descend direction

algorithm and offers strong theoretical guarantees that have been successfully employed in the

DoA estimation context [65, 66]. Particularly, when the grid is fine and the columns of Ãq,λ are

strongly coherent, we can guarantee that each m̃q obtained from (50) is exactly 1-sparse. Thus,

using the Coordinate Descent algorithm [67] to minimize (50), we obtain an analytic solution

for each sub-problem and the sparsity of the desired minimizer m̃ reduces the computational

complexity. Each step involves the hard thresholding operator Hs(.), that keeps the s-largest

components of a vector and sets the remaining entries equal to zero, thus, it automatically satisfies

both constraints of sparsity and positivity. We obtain the update for the [k]-th iteration as

m̃[k]
q = H1

m̃[k−1]
q + τ[k]

q

∑
λ∈Λ

VqT
λ

(
r̂q
λ − Vq

λm̃[k−1]
q

) , (51)
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with Vq
λ the q-th column of Vλ, where we can allow a step size τ[k]

q that depends on m̃[k−1]
q and

the [k]-th iteration, by the use of the Normalized Iterative Hard Thresholding [68]. Let us take

benefit of the 1-sparsity of m̃q (see, Subsection 2.2) in order to choose τ[k]
q : firstly, we define its

associated residual as

r̂q
λ = r̂λ −

Q∑
q′=1
q′,q

Vq′

λ m̃q′ . (52)

Secondly, we consider the initialization m̃[k−1]
q = 0 and note that the dictionary of m̃q is given by

Vq =
[
VqT
λ1
, . . . ,VqT

λJ

]T
, (53)

whose columns have the same norm. Consequently, by choosing

τ[k]
q =

1∥∥∥vq
∥∥∥2

2

=
1∑

λ∈Λ

∥∥∥vq
λ

∥∥∥2
2

, (54)

where vq and vq
λ are, respectively, any column of Vq and Vq

λ, we obtain directly the step size and

then solution for m̃q.

In the network, the z-th agent, Az, accesses only {hλ(.)}λ∈Λz in (50). In order to estimate m̃q

and then deduce its DoA and mq,λ, each agent Az can calculate the values
∑
λ∈Λz

VqT
λ r̂q

λ and send

them to the fusion center, which performs the thresholding step in (51). Then, the fusion center

transmits only the non-zero value of m̃q and its corresponding direction dλ0,q. Benefiting from the

positivity of m̃q, we are able to adopt the procedure of [61], that solves a top-K problem. Thus,

the Z agents can send only a fraction of the estimates to the fusion center further reduce the

communication overhead. We remark, that for compactness of the presentation, this procedure

is not included in Algorithm 1.3, since it only improves the communication efficiency.

Afterward, the estimation of
{
σn
λ

}
λ∈Λ

is performed locally, without the need of transmitting

the estimated values. Firstly, note that without considering non-calibration sources, i.e., RU
λ ≈ 0,

the estimation of σn
λ is given by

σn
λ = vecdiag

(
R̂λ − ĜλR̂K

λĜH
λ

)
, (55)

since we assume independence of σn
λ across wavelength. Secondly, we remove the bias intro-

duced by the non-calibration sources as follows: we calculate the power

σ̂r
λ =

aH
λ (dλ,r)

(
R̂λ − ĜλR̂K

λĜH
λ

)
aλ(dλ,r)∥∥∥aλ(dλ,r)

∥∥∥2
2

(56)
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input:
{
R̂λ

}
λ∈Λz

z-th local

proces-

sor Az

fusion

center

output: {p̂λ}λ∈Λz

{ĝλ}λ∈Λz
using Algorithm 1.2.2

α̂ using (32)

{yλ}λ∈Λz
using (24)

∑
λ∈Λz

VqT
λ r̂q

λ, q = 1, . . . ,Q, using Algorithm 1.3

m̃q and dλ0,q, q = 1, . . . ,Q, using (51)

{
σ̂n
λ,Ωλ

}
λ∈Λz

using (57) and Algorithm 1 (step 4)

then repeat until convergence

Figure 2: Operation flow and signaling exchange between a local processor Az and the central processor. The first third

arrows are performed repetitively during Algorithm 1.2 and the two middle arrows during Algorithm 1.3.

of the residual sample covariance matrix for a random direction dλ,r, where no source is supposed

to be present. We then approximate aH
λ (dλ,r)aλ(dλ,q) ≈ 0 for any dλ,r , dλ,q, which yields σ̂r

λ as

the sum of the sensor noise powers [7, 69]. By imposing
∑P

p=1

[
σn
λ

]
p

= σ̂r
λ to the minimization

of (17) w.r.t. σn
λ, the new unbiased solution is given by

σ̂n
λ = σn

λ +
1
P

(
σ̂r
λ − 1T

P×1σ
n
λ

)
1P×1, (57)

which concludes the description of Algorithm 1.3. Finally, operation flow and signaling exchange

between a local processor Az and the central processor is given in Fig 2.

4. Cramér-Rao Bound

The Cramér-Rao Bound (CRB) expresses a lower bound on the variance of the estimation

error of a deterministic vector parameter for an unbiased estimator [70, 71]. In this section, after

obtaining the CRB for the mono-wavelength scenario, we define the unconstrained CRB in the

multi-wavelength scenario and finally take into account the dependence across wavelength (see,
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Subsection 2.2) to obtain the constrained CRB that corresponds to the data model (4) and the

constraints in Subsection 2.2.

Let us consider the mono-wavelength scenario and stack the unknown parameters in

pλ =
[
<(gT

λ),=(gT
λ),mT

λ ,m
UT
λ ,d

T
l,λ,d

UT
l,λ ,d

T
m,λ,d

UT
m,λ,σ

nT
λ

]T, (58)

where dl,λ =
[
dl,λ,1, . . . , dl,λ,Q

]T, dU
l,λ = [dU

l,λ,1, . . . , d
U

l,λ,QU ]T, dm,λ = [dm,λ,1, . . . , dm,λ,Q]T, dU
m,λ =

[dU
m,λ,1, . . . , d

U

m,λ,QU ]T and ΓU
λΓ

UH
λ = diag

(
mU
λ

)
. We obtain the CRB, Cλ, corresponding to the

parameter vector in (58), after straightforward adaptations from [6, Chapter 4]. Then, for the

multi-wavelength scenario, we gather the unknown parameters in a vector p = [pT
λ1
, . . . ,pT

λJ
]T,

suppose that the signals are i.i.d. across wavelength and ignore the constraints in Subsection 2.2

for the parameters. Consequently, we obtain the unconstrained CRB, C̃, as

C̃ =


Cλ1 0 0

0
. . . 0

0 0 CλJ

 . (59)

From C̃, we obtain the constrained CRB [72] corresponding to the data model, C, as

C = C̃ − C̃ΨT(ΨC̃ΨT)−1ΨC̃T, (60)

where Ψ is the gradient matrix of the constraints in Subsection 2.2, given by

Ψ =

[
ΨT

gλ ,Ψ
T
mλ
,ΨT

mU
λ

,ΨT
Dλ
,ΨT

DU
λ

]T
, (61)

in which the constraints on gλ,mλ,mU
λ,Dλ and DU

λ, λ ∈ Λ, are represented in Ψgλ ,Ψmλ
,ΨmU

λ
,ΨDλ

and ΨDU
λ
, respectively. Since mλ ∝ λ

−2, we have

λ2
1mλ1 = λ2

2mλ2 = . . . = λ2
JmλJ , (62)

leading to

Ψmλ
=



λ2
1I −λ2

2I 0 . . . 0

λ2
1I 0

. . . 0
...

...
. . .

...

λ2
1I 0 . . . 0 −λ2

JI


(63)
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and we add zeros for the indices corresponding to the remaining parameters in p. ΨmU
λ

is obtained

in the same way. On the other hand, in order to derive ΨDλ
, we make use of the following

constraints

λ−2
1 dl,q,λ1 = λ−2

2 dl,q,λ2 = . . . = λ−2
J dl,q,λJ , (64)

λ−2
1 dm,q,λ1 = λ−2

2 dm,q,λ2 = . . . = λ−2
J dm,q,λJ , (65)

leading to

Ψl
q =



λ−2
1 −λ−2

2 0 . . . 0

λ−2
1 0

. . . 0
...

...
. . .

...

λ−2
1 0 . . . 0 −λ−2

J


(66)

and we add zeros for the indices corresponding to the remaining parameters in p and process in

a same way for dm to obtain Ψm
q . Thus, ΨDλ

is given by

ΨDλ
=

[
ΨlT

1 , . . . ,Ψ
lT
Q ,Ψ

mT
1 , . . . ,ΨmT

Q

]T
, (67)

and we derive in the same way ΨDU
λ
. Finally, we consider the constraint (11) that reduces the

degree of freedom of {gλ}λ∈Λ from JP to KP, i.e., we add (J − K)P constraints. Let us define

gK = [gT
λ1
, . . . , gT

λK
]T, (68)

BK =
[
BT
λ1
, . . . ,BT

λK

]T
. (69)

Thus,

gλ = BλB−1
K gK , λ = λK+1, . . . , λJ , (70)

leading to

Ψgλ =



BλK+1 B−1
K −I 0 . . . 0

BλK+2 B−1
K 0

. . . 0
...

...
. . .

...

BλJ B−1
K 0 . . . 0 −I


(71)

and we add zeros for the indexes corresponding to the remaining parameters in p, which con-

cludes our derivation of the constrained CRB.
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5. Simulations

The proposed method is evaluated in realistic situations, with typical parameter values com-

monly used in radio astronomy applications [3, 6, 7]. In order to analyze the estimation of

{gλ}λ∈Λ, we first focus on Algorithm 1.2 and Algorithm 1.2.2 and then show results for the PMCA.
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Figure 3: LOFAR’s Initial Test Station antenna locations [73].
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Figure 4: gλ-residual, εgλ , as function of the iteration number tλ of Algorithm 1.2.2, for different values of the [t]-th

iteration of Algorithm 1.2.

5.1. Data Setup

The antenna locations correspond to the LOFAR’s Initial Test Station [73], with P = 60

antennas disposed in a five-armed spiral, as shown in Figure 3. We assume a sky model with

λ0 = 10 m ( f0 = 30 MHz) consisting of Q = 2 strong calibration sources and QU = 8 weak non-

calibration sources, provided from the ten strongest sources in the table of [14], such that they

represent the weak contributed in the covariance matrices (the matrix RU
λ in (7)). The total power
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Figure 5: Primal residual, εr , as function of the iteration number t of Algorithm 1.2, for smoothing polynomial terms

K = 2, 3, 4 and regularization term ρ = 5 · 102P, 5 · 103P, 5 · 104P.

of these sources is assumed to be 1% of the total antenna noise power, a typical scenario for

radio interferometers [6]. We consider data taken at J = 13 wavelengths from 7.1 m to 16.5 m.

We create {gλ}λ∈Λ by using a polynomial of order KK = 3, with bλ,k = ((λ0 − λ)/λ)k−1, given

as one realization sample from CN
(
1,

(
σαR + jσαC

)
I
)

with σαR = σαC = 0.25 and we consider

g[0]
λ = 1 as an initialization. To initialize Algorithm 1.2, we consider the regularization parameter

ρ = 0 during the first estimation of gλ, i.e., the first estimation of gλ is done without enforcing

smoothness. We generate the shifts for
(
lq,λ0 ,mq,λ0

)
, q = 1, . . . ,Q and the diagonal of Γλ0 with

one realization sample from a uniform distribution centred at
((

lK
q,m

K
q

))
and 1 with a variance of

σD
λ0

= 10−1/
√

3 and σΓ
R = σΓ

C = 1/
√

60, respectively. We initialize with Γλ = I and data are

produced via the signal model given in (3), in order to obtain the sample covariance matrices

(14).

5.2. Results

5.2.1. Results for the estimation of {gλ}λ∈Λ

We illustrate here the convergence behavior and the performance of both Algorithm 1.2 and

Algorithm 1.2.2. The number of observations is kept to N = 214 and all the stopping criteria

are set to 0.03. In order to analyse the convergence, we define the gλ-residual, εgλ , the primal
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Figure 6: Dual residual, εd , as function of the iteration number t of Algorithm 1.2, for smoothing polynomial terms

K = 2, 3, 4 and regularization term ρ = 5 · 102P, 5 · 103P, 5 · 104P.

residual, εr, and the dual residual, εd, as

ε[tλ]
gλ =

1
J

∑
λ∈Λ

∥∥∥g[tλ]
λ − g[tλ−1]

λ

∥∥∥
2∥∥∥g[tλ]

λ

∥∥∥
2

, (72)

ε[t]
r =

1
√

PJ

∑
λ∈Λ

∥∥∥g[t]
λ − Bλα

[t]
∥∥∥

2 , (73)

ε[t]
d =

1
√

PJ

∥∥∥α[t] − α[t−1]
∥∥∥

2 . (74)

The primal residual depicts the error between the local solution and the predicted consensus

value. On the other hand, the dual residual depicts the convergence of the reference variable α.
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Figure 7: RMSE on {gλ}λ as function of wavelength and compared to the CBRs. The edge wavelengths have a higher

error, particularly for K = 2 and K = 4, due to our choice of false interpolating polynomials compared to the real/true

polynomial order KK = 3.
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In Figure 4, we focus on the convergence of Algorithm 1.2.2. For t > 1, we observe that

the convergence is almost immediate (tλ ≈ 5 iterations). In Figure 5 and Figure 6, we show,

respectively, the primal and dual residuals, both as function of the [t]-th iteration number, when

N = 214. We have set the regularization term ρ = 5 · 102P, 5 · 103P, 5 · 104P and the smoothing

polynomial order K = 2, 3, 4, with K = 2 underestimating the simulated polynomial order while

K = 4 overestimating it. It is clear that as the value of ρ increases, the primal and dual residuals

converge faster, for t ≈ 5 iterations, for a sufficient value of ρ. Meanwhile, the primal and dual

residuals differ slightly for different polynomial order K.

The statistical performance is then compared with mono-calibration scheme, the unconstrained-

CRB Cλ and the multi-constrained-CRB, C. In Figure 7, we plot the Root Mean Square Error

(RMSE) for the estimates of gλ. Results are averaged for 500 Monte-Carlo runs, for each chosen

value of K and ρ. We approach the multi-constrained-CRB for K = KK and even with both K = 2

and K = 4, we significantly improve mono-calibration and be close to the CRB. Moreover, we

also have errors due to polynomial interpolation, which is clearly seen at the edge wavelengths.

5.2.2. Results for the PMCA

We similarly analyze both convergence and performance of the proposed PMCA. During the

DoA estimation, we choose initially a coarse grid, with the same resolution for each coordinate

of each calibrator. We apply grid refinements [36] until we avoid off-grid mismatch.

Firstly, we concentrate on the convergence of Algorithm 1 and Algorithm 1.3, respectively.

For this purpose, we define the m̃, σn
λ and p-residuals, respectively, by

ε[k]
m̃ =

1
J

∑
λ∈Λ

(∥∥∥m[k]
λ −m[k−1]

λ

∥∥∥
2∥∥∥m[k]

λ

∥∥∥
2

+
1
Q

Q∑
q=1

∥∥∥∥d[k]
λ,q − d[k−1]

λ,q

∥∥∥∥
2

)
, (75)

ε[i]
σn
λ

=
1
J

∑
λ∈Λ

∥∥∥σn[i]
λ − σ

n[i−1]
λ

∥∥∥
2∥∥∥σn[i]

λ

∥∥∥
2

, (76)

ε[i]
p = ε[i]

gλ + ε[i]
m̃ + ε[i]

σn
λ
. (77)

In Figure 8, the m̃-residual for Algorithm 1.3 decreases during the first iterations (k ≈ 5) and

stops due to alternating between close directions on the grid. In Figure 9, the previous residuals

and p-residual decline more slowly and we have to wait i ≈ 10 iterations to assure a correct

convergence.
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Figure 8: m̃-residual, εm̃, as function of the iteration number k of Algorithm 1.3, for different values of the [i]-th iteration

of Algorithm 1.

In order to investigate the statistical performance, we perform 200 Monte-Carlo runs for dif-

ferent sample sizes N, and setting ρ = 5 · 103P and K to its true value. We plot the RMSE of

different parameters in Figure 10 and Figure 11, as function of the number of samples N and

compared to their corresponding multi-constrained-CRB. As expected, the method approaches

the multi-constrained-CRB. This clearly show the good robustness of the method in low SNR

scenario with a presence of non-calibration sources. This is mainly due to i) considering simul-

taneously multi-wavelength observations (thus, more observations) and ii) forcing smoothness

constraints which can attenuate the effect of such unmodelled sources considered as outliers.

However, it should be noted that this robustness has its own limit depending on the number and

the power of the unmodelled sources.
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Figure 9: Variation of the residuals as function of the iteration number i of Algorithm 1.

29



103 103.5 104 104.5
10−4

10−3

10−2

10−1

N

R
oo

tM
ea

n
Sq

ua
re

E
rr

or

C-Dλ RMSE-Dλ
C-mλ RMSE-mλ
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samples N, and compared to their corresponding multi-constrained-CRB.
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Figure 11: RMSE on the undirectional gains and antenna noise powers as function of number of samples N, and compared

to their corresponding multi-constrained-CRB.

5.3. Application to LOFAR data

The LOFAR is a phased array radio telescope consisting of 50 subarrays (referred to as

stations) of which 24 are located in a relatively small centeal area near Exloo in The Netherlands

(the core stations), 14 are spread throughout The Netherlands (the remote stations) and 12 are

located in several European countries (the international stations) [1]. For this test, we use data

from a single polarization measurement with a 48-element low band antenna (LBA) array of a

single core station, which have been computed between 21:01:29 UTC and 21:10:00 UTC on

July 30, 2011, a night with mild ionospheric disturbances. The data consist of a set of array

covariance matrices, each obtained for a different 195 kHz wide frequency channel after 1 s of

integration. Figure 12 and Figure 14 show, respectively, the locations of the 48 antennas and

the uncalibrated image at 49.4 Mhz, i.e., an image plotted by assuming unit sensor gain. This

image clearly reveals two bright point sources, Cass A and Cyg A, but we observe also a large
30



amount of diffuse emission from the Milky Way. These covariance matrices constitute in this

way a relevant test for the robustness w.r.t. unmodelled sources of our algorithm, since only the

two main sources are considered as calibrators (Q = 2).
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Figure 12: LOFAR’s core station antenna locations.

We select data for 31 frequencies in the range 47.6-53.5 MHz, with central frequency (re-

spectively, wavelength) f0 = 50.5 MHz (λ0 = 5.9 m) and choose a polynomial order K = 3. It

is commonly assumed that the resolution of a radio telescope is in the order of λ/D, with D the

maximum baseline [74]. This led us to define our two displacement sectors as 10×10 grid with a

spacing of 0.2λ/D (much larger than possible angular-shifts), centered at the true directions ob-

tained from tables. We plot results of the images produced from the calibrated (using the PMCA

algorithm) covariance matrix for the frequency channels centered at 49.4 MHz in Figure 15, com-

pared with the state-of-the art [5], which considers the apparent direction of calibrators as fixed

w.r.t. λ.

The two calibrated images are very similar and show improved contrast between the two

point sources and the noise in the background of the image compared with the uncalibrated

image shown in Figure 14. This indicates that calibration has improved the images in both cases.

A closer look at the two images in Figure 15 reveals that the difffuse emission on the South of

the sky, which is a bright section of the Galactic plane (which can be seen by eye in the night sky

as the Milky Way), appears slightly brighter in the image calibrated using PMCA. This indicates

that PMCA is more robust to the presence of unmodelled sources in the image thereby reducing

the likelihood that power in the unmodelled sources is fitted to the calibrator sources by the
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calibration algorithm, which causes a bias in the calibration solutions.

Another indication that PMCA provides robustness to unmodelled flux is that the DI gain

solutions, as shown in Figure 13 for a few representative examples, are similar to those found

with the conventional approach despite the fact that the diffuse emission was not spatially filtered

as is done in the conventional approach. This comparison also shows that the gain solutions

produced by the conventional approach vary quite significantly from one frequency channel to

the next while the PMCA provides smoothed solutions, which are physically more realistic.
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Figure 13: Comparison of DI gain amplitude estimates (left) and DI gain phase estimates (right) for a few representative

examples between the solutions found using PMCA (solid lines) and the conventional per-channel calibration approach

(dots).
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Figure 14: image of the uncalibrated covariance matrix at 49.4 MHz. The presence of diffuse emission is noticeable.
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Figure 15: Image results of the calibrated covariance matrix at 49.4 MHz from the proposed PMCA (left), the calibrated

solution of the existing method used for LOFAR [5] (right). The diffuse emission appears slightly brighter in the image

calibrated using PMCA.

6. Conclusion

In this paper, we proposed a novel iterative scheme for parallel calibration of next generation

radio astronomical arrays, for which direction dependent effects affect the apparent directions of

the calibration sources and parameter values vary across wavelength. The proposed algorithm,

named Parallel Multi-wavelength Calibration Algorithm (PMCA), iteratively estimates the com-

plex direction independent antenna gains and their noise powers, whereas, it jointly estimates

the directions of the calibrators and their associated direction dependent gain. These two main

steps are, respectively, based on Alternating Direction of Multiple Multipliers and Distributed

Iterative Hard Thresholding procedures. This leads to a statistically efficient and robust scheme

to unmodelled sources as shown by numerical simulations and by application to actual LOFAR

data.

PMCA offers a framework that is easily adaptable to variations on the scenarios presented in

this paper, while maximizing the use of a priori available knowledge of the physics of the instru-

ment and the measurement process. The parallelism in the PMCA ensures that the algorithm is

scalable to large data sets, which can be paralleled over a number of nodes. The algorithm is set

up in such a way that the use of data remains local, i.e., only the node on which a specific part of

the data resides needs access to that data.
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